Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncol Ther ; 11(1): 111-128, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36645622

RESUMO

INTRODUCTION: Liposomal irinotecan promotes controlled sustained release of irinotecan (CPT-11), therefore, we hypothesize that the therapeutic index (quantitative measurement of the relative efficacy/safety ratio of a drug) will be higher for liposomal than non-liposomal irinotecan. METHODS: We compared the therapeutic indexes of liposomal and non-liposomal irinotecan in mice bearing subcutaneous patient-derived xenograft (PDX) pancreatic tumors under dosing regimens approximating the clinical setting. Following preliminary drug sensitivity/antitumor activity analyses on three PDX tumor models, one model was selected for analyses of efficacy, biomarker, toxicology, pharmacokinetics in mice receiving liposomal irinotecan (2.5, 10, 50 mg/kg/week) or non-liposomal irinotecan (10, 25, 50 mg/kg/week). The maximum tolerated dose (MTD) for each treatment was 50 mg/kg/week. RESULTS: Using the selected IM-PAN-001 model at the MTD (both treatments, 50 mg/kg/week), antitumor activity, phospho-histone gamma-H2AX protein staining in cancer cell nuclei, histological tumor regression, and plasma levels of CPT-11 and its active metabolite SN-38 after 24 h were greater with liposomal than non-liposomal irinotecan, but tumor SN-38 levels were similar. At the lowest doses assessed, antitumor activity, histological tumor regression, and jejunum and bone marrow toxicity were similar. Based on these findings, liposomal and non-liposomal irinotecan had therapeutic indexes of 20 and 5, respectively. CONCLUSION: This non-clinical study showed a fourfold broader therapeutic index with liposomal than non-liposomal irinotecan in mice bearing IM-PAN-001 PDX pancreatic tumors, even at optimal dosing for the two drugs. These findings support the clinical benefit observed with liposomal irinotecan in patients with pancreatic cancer.

2.
Mol Cancer Ther ; 21(7): 1149-1159, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35500018

RESUMO

Gastric adenocarcinoma (GAC) is the third most common cause of cancer-related deaths worldwide. Combination chemotherapy remains the standard treatment for advanced GAC. Liposomal irinotecan (nal-IRI) has improved pharmacokinetics (PK) and drug biodistribution compared with irinotecan (IRI, CPT-11). Angiogenesis plays a crucial role in the progression and metastasis of GAC. We evaluated the antitumor efficacy of nal-IRI in combination with novel antiangiogenic agents in GAC mouse models. Animal survival studies were performed in peritoneal dissemination xenografts. Tumor growth and PK studies were performed in subcutaneous xenografts. Compared with controls, extension in animal survival by nal-IRI and IRI was >156% and >94%, respectively. The addition of nintedanib or DC101 extended nal-IRI response by 13% and 15%, and IRI response by 37% and 31% (MKN-45 xenografts); nal-IRI response by 11% and 3%, and IRI response by 16% and 40% (KATO-III xenografts). Retardation of tumor growth was greater with nal-IRI (92%) than IRI (71%). Nintedanib and DC101 addition tend to augment nal-IRI or IRI response in this model. The addition of antiangiogenic agents enhanced tumor cell proliferation inhibition effects of nal-IRI or IRI. The tumor vasculature was decreased by nintedanib (65%) and DC101 (58%), while nal-IRI and IRI alone showed no effect. PK characterization in GAC xenografts demonstrated that compared with IRI, nal-IRI treatment groups had higher retention, circulation time, and tumor levels of CPT-11 and its active metabolite SN-38. These findings indicate that nal-IRI, alone and in combination with antiangiogenic agents, has the potential for improving clinical GAC therapy.


Assuntos
Neoplasias Pancreáticas , Neoplasias Gástricas , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Humanos , Irinotecano , Lipossomos , Camundongos , Neoplasias Pancreáticas/patologia , Neoplasias Gástricas/tratamento farmacológico , Distribuição Tecidual
3.
J Immunol ; 202(5): 1582-1594, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30683704

RESUMO

The long serum t 1/2 of IgGs is ensured by their interaction with the neonatal Fc receptor (FcRn), which salvages IgG from intracellular degradation. Fc glycosylation is thought not to influence FcRn binding and IgG longevity in vivo. In this article, we demonstrate that hypersialylation of asparagine 297 (N297) enhances IgG serum persistence. This polarized glycosylation is achieved using a novel Fc mutation, a glutamate residue deletion at position 294 (Del) that endows IgGs with an up to 9-fold increase in serum lifespan. The strongest impact was observed when the Del was combined with Fc mutations improving FcRn binding (Del-FcRn+). Enzymatic desialylation of a Del-FcRn+ mutant or its production in a cell line unable to hypersialylate reduced the in vivo serum t 1/2 of the desialylated mutants to that of native FcRn+ mutants. Consequently, our study proves that sialylation of the N297 sugar moiety has a direct impact on human IgG serum persistence.


Assuntos
Anticorpos/sangue , Anticorpos/uso terapêutico , Fragmentos Fc das Imunoglobulinas/sangue , Fragmentos Fc das Imunoglobulinas/química , Imunoglobulina G/sangue , Imunoglobulina G/uso terapêutico , Animais , Anticorpos/química , Células HEK293 , Meia-Vida , Humanos , Imunoglobulina G/química , Camundongos , Camundongos Knockout
4.
J Med Chem ; 60(8): 3383-3404, 2017 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-28398044

RESUMO

Recently, we reported a novel role for KMO in the pathogenesis of acute pancreatitis (AP). A number of inhibitors of kynurenine 3-monooxygenase (KMO) have previously been described as potential treatments for neurodegenerative conditions and particularly for Huntington's disease. However, the inhibitors reported to date have insufficient aqueous solubility relative to their cellular potency to be compatible with the intravenous (iv) dosing route required in AP. We have identified and optimized a novel series of high affinity KMO inhibitors with favorable physicochemical properties. The leading example is exquisitely selective, has low clearance in two species, prevents lung and kidney damage in a rat model of acute pancreatitis, and is progressing into preclinical development.


Assuntos
Inibidores Enzimáticos/farmacologia , Quinurenina 3-Mono-Oxigenase/antagonistas & inibidores , Pancreatite/tratamento farmacológico , Doença Aguda , Animais , Inibidores Enzimáticos/uso terapêutico , Humanos , Ratos
6.
Nat Med ; 22(2): 202-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26752518

RESUMO

Acute pancreatitis (AP) is a common and devastating inflammatory condition of the pancreas that is considered to be a paradigm of sterile inflammation leading to systemic multiple organ dysfunction syndrome (MODS) and death. Acute mortality from AP-MODS exceeds 20% (ref. 3), and the lifespans of those who survive the initial episode are typically shorter than those of the general population. There are no specific therapies available to protect individuals from AP-MODS. Here we show that kynurenine-3-monooxygenase (KMO), a key enzyme of tryptophan metabolism, is central to the pathogenesis of AP-MODS. We created a mouse strain that is deficient for Kmo (encoding KMO) and that has a robust biochemical phenotype that protects against extrapancreatic tissue injury to the lung, kidney and liver in experimental AP-MODS. A medicinal chemistry strategy based on modifications of the kynurenine substrate led to the discovery of the oxazolidinone GSK180 as a potent and specific inhibitor of KMO. The binding mode of the inhibitor in the active site was confirmed by X-ray co-crystallography at 3.2 Å resolution. Treatment with GSK180 resulted in rapid changes in the levels of kynurenine pathway metabolites in vivo, and it afforded therapeutic protection against MODS in a rat model of AP. Our findings establish KMO inhibition as a novel therapeutic strategy in the treatment of AP-MODS, and they open up a new area for drug discovery in critical illness.


Assuntos
Benzoxazóis/farmacologia , Quinurenina 3-Mono-Oxigenase/antagonistas & inibidores , Insuficiência de Múltiplos Órgãos/genética , Oxazolidinonas/farmacologia , Pancreatite/genética , Propionatos/farmacologia , RNA Mensageiro/metabolismo , Doença Aguda , Animais , Cromatografia Líquida , Cristalografia por Raios X , Modelos Animais de Doenças , Células HEK293 , Hepatócitos/metabolismo , Humanos , Técnicas In Vitro , Rim/metabolismo , Rim/patologia , Quinurenina 3-Mono-Oxigenase/genética , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Knockout , Insuficiência de Múltiplos Órgãos/etiologia , Insuficiência de Múltiplos Órgãos/patologia , Pâncreas/metabolismo , Pâncreas/patologia , Pancreatite/complicações , Pancreatite/patologia , Ratos , Espectrometria de Massas em Tandem , Triptofano/metabolismo
7.
J Med Chem ; 58(18): 7140-63, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26090771

RESUMO

The hybridization of hits, identified by complementary fragment and high throughput screens, enabled the discovery of the first series of potent inhibitors of mitochondrial branched-chain aminotransferase (BCATm) based on a 2-benzylamino-pyrazolo[1,5-a]pyrimidinone-3-carbonitrile template. Structure-guided growth enabled rapid optimization of potency with maintenance of ligand efficiency, while the focus on physicochemical properties delivered compounds with excellent pharmacokinetic exposure that enabled a proof of concept experiment in mice. Oral administration of 2-((4-chloro-2,6-difluorobenzyl)amino)-7-oxo-5-propyl-4,7-dihydropyrazolo[1,5-a]pyrimidine-3-carbonitrile 61 significantly raised the circulating levels of the branched-chain amino acids leucine, isoleucine, and valine in this acute study.


Assuntos
Proteínas Mitocondriais/antagonistas & inibidores , Pirazóis/química , Pirimidinonas/química , Transaminases/antagonistas & inibidores , Adipócitos/efeitos dos fármacos , Adipócitos/enzimologia , Animais , Cristalografia por Raios X , Humanos , Isoleucina/sangue , Leucina/sangue , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Modelos Moleculares , Pirazóis/síntese química , Pirazóis/farmacologia , Pirimidinonas/síntese química , Pirimidinonas/farmacologia , Relação Estrutura-Atividade , Transaminases/química , Valina/sangue
8.
ACS Med Chem Lett ; 4(7): 632-6, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-24900722

RESUMO

AMP-activated protein kinase (AMPK) is an evolutionarily conserved fuel-sensing enzyme that is activated in shortage of energy and suppressed in its surfeit. AMPK activation stimulates fatty acid oxidation, enhances insulin sensitivity, alleviates hyperglycemia and hyperlipidemia, and inhibits proinflammatory changes. Thus, AMPK is a well-received therapeutic target for type 2 diabetes and other metabolic disorders. Here, we will report the discovery of pyrrolopyridone derivatives as AMPK direct activators. We will illustrate the synthesis and structure-activity relationships of the series as well as some pharmacokinetic results. Some compounds exhibited encouraging oral exposure and were evaluated in a mouse diabetic model. Compound 17 showed oral activity at 30 mg/kg on blood glucose.

9.
Dig Dis Sci ; 52(7): 1653-61, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17372819

RESUMO

The effect of colitis induced with dextran sodium sulfate (DSS) in rats on the bioavailability of drugs transported by the oligopeptide transporter PepT-1 was analyzed by studying the pharmacokinetics of PepT-1 substrates: cephalexin and valacyclovir, the prodrug of antiviral acyclovir. Western blot, immunohistochemistry, and real-time PCR were used to determine the PepT-1 protein and gene expression. We observed (1) no significant modification of PepT-1 expression in the duodenum and jejunum; (2) a slight decrease in both PepT-1 mRNA (50%) and protein expression (25%) in the ileum following DSS challenge; and (3) ectopic PepT-1 immunostaining in regenerative hyperplasia segments in the distal colon from DSS-treated rats where focal inflammation is localized. However, no modification of pharmacokinetic parameters (C (max), T (max), AUC) of cephalexin or acyclovir was detected. In conclusion, DSS-induced rat colitis did not alter PepT-1 substrate bioavailability despite certain modifications in PepT-1 expression profile.


Assuntos
Colite/metabolismo , Mucosa Intestinal/metabolismo , Simportadores/metabolismo , Aciclovir/análogos & derivados , Aciclovir/farmacocinética , Animais , Antibacterianos/farmacocinética , Antivirais/farmacocinética , Disponibilidade Biológica , Cefalexina/farmacocinética , Colite/induzido quimicamente , Imuno-Histoquímica , Masculino , Transportador 1 de Peptídeos , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Valaciclovir , Valina/análogos & derivados , Valina/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...